

1510920095 長岡知実 指導教員 藤井大地 教授

ESO法 制振ダンパー 位相最適化 グランドストラクチャ

1. はじめに

近年,建物の地震に対する安全性を確保する方法とし て,建物の骨組構造に地震エネルギー吸収装置(制振ダ ンパー)を設置する制振構造が増えている.しかしなが ら,耐震工法に用いられる筋交や耐震壁と比較して,制 振工法に用いられる制振ダンパーは一般的に高価であり, 必要最小限のダンパーを適切に配置することが求められ る.一般的には構造体の各層に分散的に制振ダンパーを 配置する層間設置型がよく用いられている.また,構造 上の条件とは別に、建物の用途や計画上の理由によって, ダンパーを設置できる空間が制約されることがある.し たがって,制振構造の設計において,制震ダンパーの適 切な配置を見つけることは容易ではない.

既往の研究で野村ら1)は,鋼構造平面骨組を対象とし て, ESO (Evolutionary Structural Optimization)法 2)により制振ダンパーの最適配置を求める方法を提案し た.ただし,文献 1)の解析例は弾性解析のものであり, 柱・梁の端部で塑性化を生じるような弾塑性問題に対し ては有効性が確かめられていない.そこで本論文は,平 面骨組の時刻歴応答解析を部材端の曲げ降伏を考慮でき るものに拡張し,提案手法の弾塑性問題への適応性を検 討する.

2. ESO 法を用いた動的解析によるダンパーの配置

柱・梁の有限要素として図1に示すような要素の両端 に曲げばねが付加された要素を用いる.ただし,要素両 端の曲げばねの剛性は次式で表されるものとする.

$$k_{i}^{R(n)} = \frac{\lambda_{i}^{(n)}}{1 - \lambda_{i}^{(n)}} \frac{6EI^{(n)}}{l}, \quad k_{j}^{R(n)} = \frac{\lambda_{j}^{(n)}}{1 - \lambda_{i}^{(n)}} \frac{6EI^{(n)}}{l}$$
(1)

ここで、 $\lambda_i^{(n)}$ は、i端のばねパラメータで、 $\lambda_i^{(n)} = 1$ の場合は剛接合、 $\lambda_i^{(n)} = 0$ の場合はピン接合になる、弾塑性特性は、Bi-linearの完全弾塑性型として、部材端の曲げモーメントが全塑性モーメント M_p に達すると(1)式のバネパラメータを 1/100 にする.

また、本論文ではダンパーをダッシュポットとしてモ デル化する.設置可能なダンパー数を*N*とし、粘性減衰 係数を*c*とするとダッシュポットの減衰力は、次のよう に定義できる.(図2参照)

$$\begin{cases} f_{ci}^{(k)} \\ f_{cj}^{(k)} \end{cases} = \begin{bmatrix} c^{(k)} & -c^{(k)} \\ -c^{(k)} & c^{(k)} \end{bmatrix} \begin{cases} \dot{u}_i^{(k)} \\ \dot{u}_j^{(k)} \end{cases} \quad (k = 1, \cdots, N)$$
(2)

ここに、 $f_{ci}^{(k)}, f_{cj}^{(k)}$ および $\dot{u}_{i}^{(k)}, \dot{u}_{j}^{(k)}$ は、k番目要素の節点 i, jの減衰力、速度を表す.また、k番目要素の減衰係 数マトリクスを、設計変数 ρ_{i} を用いて次のように表す.

$$\mathbf{c}_{k} = \rho_{k} \mathbf{c}_{k}^{0}, \quad \rho_{k} = \begin{cases} 1 & , \quad \mathbf{c}_{k}^{0} = \begin{bmatrix} c^{(k)} & -c^{(k)} \\ -c^{(k)} & c^{(k)} \end{bmatrix}$$
(3)

ここに, ρ_k はダンパーが残存する場合は1,除かれる場合は0となる.そして,各ステップで除去を決定する指標として,次式の累積減衰エネルギー E_k を用いる.

$$E_{k} = (1/2) \int_{0}^{t_{k}} \left(\dot{\mathbf{d}}_{k}^{T} \rho_{k} \mathbf{c}_{k}^{0} \dot{\mathbf{d}}_{k} \right) dt, \quad \dot{\mathbf{d}}_{k} = \begin{cases} \dot{u}_{i}^{(k)} \\ \dot{u}_{j}^{(k)} \end{cases}$$
(4)

ただし, *t_g*は時刻歴応答解析の解析時間である. なお, (4)式の時間積分は,単純に平均加速度法の各時間ステッ プの減衰エネルギーを加算することによって求める.

図2 ダッシュポットモデル

以上の準備のもと、本手法の概要は次のようになる.

- すべての配置可能位置にダンパーが設置された平面 骨組に対して時刻歴応答解析を行い、各ダンパーの 累積減衰エネルギーを計算する.
- ② 累積減衰エネルギーが最小値のダンパーを除去する.
- ③ ダンパーが除去された骨組に対して、再度時刻歴応 答解析を行い、残存するダンパーの累積減衰エネル ギーを計算する.
- ④ 全てのダンパーが無くなるまで、②、③を繰り返す.
- ⑤ 表示ソフトを用いて除去ステップを参照し、ダンパー数および配置を決定する.

Study on Optimum Placement of Building Damping Damper using ESO Method -Investigation in Elastoplastic Analysis-

NAGAOKA Tomomi

3. 解析例

3.1 6層5スパン

1 つ目の例題として,6 層 5 スパンの鉄骨構造モデル を最大加速度 100gal (弾性範囲)と 500gal (弾塑性範 囲)で解析し比較する.

ここでは、ダンパーは粘性減衰ダンパーを K 型に設置しており、地震波は告示波の ElCentro NS を入力している.

図 1, 図 2 の通り Step9, Step11, Step14 でダンパー の消え方に多少変化が現れているが, 概ね類似した消え 方になっていることがわかる. 図 2 の青色部分は両端の どちらかが塑性ヒンジの状態になることを示す.

3.2 9層4スパン

2 つ目の例題として,9 層 4 スパンの鉄骨構造モデル を最大加速度 100gal (弾性範囲)と 1000gal (弾塑性範 囲)で解析し比較する.

図 3, 図 4 の通り Step13, Step16 でダンパーの消え 方に変化が現れているが, 概ね類似した傾向になってい ることがわかる.また,最大加速度 500gal の場合も解 析したが, 100gal の場合とダンパーの除去過程に変化は なかった.

4. 結論

本論文では,先行研究 1)を部材端の曲げ降伏を評価で きるものに拡張し,提案手法の弾塑性問題への適応性を 検証した.これらの例題を通して,弾性と弾塑性の場合 でダンパーの除去過程に多少の変化が現れるか,概ね類 似した傾向になることがわかった.このため,ある程度 ダンパー数を確保できれば,弾性解析で得られた配置を 採用できることがわかった.

参考文献

- 野村将貴,松本慎也,崎野良比呂,藤井大地:ESO 法を用いた高層ビルの制振ダンパー構面配置の最適 化,日本建築学会構造系論文集,Vol.82,No.742, pp.1885-1892,2017.12
- 2) Xie, Y.M., Steven, G.P. : Evolutionary Structural Optimization, Springer, 1997