近畿大学工業技術研究科建築学専攻修士論文概要

	平成 15 年度	番号	02309206	
指導教官	在永 末徳 教授	氏名	小泉 智彦	
題名	CFRP を用いた中空スラブの最適補強に関する研究			

1. はじめに

近年,東海沖地震や南海沖地震の可能性が高まっており, 特に既存不適格建物の耐震補強が急務となってきている。ま た,中空スラブの実用化が始まってから 40 年余りが経ち, 建て替えの必要がある建物が増加している。このような背景 から本研究では環境保全を主眼に置き末永く建物を活用する ことを考える。具体的には,新しい耐震補強材として注目が 集まっている CFRP 板を用いて中空スラブの耐震補強を行う ことを考える。CFRP 板は厚さが 1mm 程度と薄いにもかか わらず鉄筋と同等の弾性率かつ高強度を有し,軽量で施工性 も容易なことから補強材として最適である。ただし,CFRP 板は現在高価なものであり経済性も考え,できるだけ効果的 に貼り付けるべきである。そこで本研究では,CFRP 板の一 方向性中空スラブへの最適な貼り方を解析的に求める方法を 提案する。

本研究では,まず,中空スラブの解析を行うためにミンド リン理論に基づく板曲げ解析プログラムを開発する。本プロ グラムは一般の設計者が利用しやすいように Excel VBA を 用いて作成する。本プログラムにより,中空スラブの応力と 固有振動の解析を行うことができる。

次に,床スラブに CFRP 板補強を行った中空スラブの解析 プログラムを開発する。この場合,CFRP 板をスラブの片側 に貼り付けると,板の中立軸が板厚の中央ではなくなるため, 従来の板曲げ理論の適用が難しくなる。そこで本プログラム では,有限要素として3次元の要素を採用する。また, CFRP 部分の要素は床スラブに比較して非常に薄くなるため 要素のアスペクト比が変化しても,精度の落ちない要素が必 要である。そこで,本研究では,関口,菊池らが提案してい る応力仮定法要素を用いる。この要素は,変位と同時に応力 も線形に仮定するため,同じ8節点要素でありながら非常に 精度が良くスラブ等の板状物体の解析に適している。次に, このプログラムに設計領域・荷重条件・境界条件を与えるこ とで剛性を最大化する位相(形態)を求めることができる位 相最適化手法の密度法を組み込み,3次元要素の積層板解析 で CFRP 板の最適な位相を求められるようにする。

解析結果をふまえ,中空スラブの強度,振動実験とCFRP 補強を施した中空スラブの強度実験を行う。

2. 中空スラブの解析法と解析例

2.1 応力解析

ミンドリンの板曲げ理論を3次元弾性論の縮退として考えると,3次元の変位は次式のように2次元化される(図-1)。

$$u(x, y, z) = z\theta_{y}(x, y)$$

$$v(x, y, z) = -z\theta_{x}(x, y)$$
(1)

$$w(x, y, z) = w_{0}(x, y)$$

ここに, w_0 はたわみ, θ_x , θ_y は x, y 軸まわりの回転角を表す。 図 - 2 に示す 4 節点要素を仮定し,次式の近似を行う。

$$w_{0}(x, y) = \mathbf{N}(\xi, \eta) \mathbf{w} \qquad \mathbf{w}^{T} = \{w_{1} \quad w_{2} \quad w_{3} \quad w_{4}\}$$

$$\theta_{x}(x, y) = \mathbf{N}(\xi, \eta) \mathbf{\theta}_{x} \qquad \mathbf{\theta}_{x}^{T} = \{\theta_{x1} \quad \theta_{x2} \quad \theta_{x3} \quad \theta_{x4}\} \qquad (2)$$

$$\theta_{y}(x, y) = \mathbf{N}(\xi, \eta) \mathbf{\theta}_{x} \qquad \mathbf{\theta}_{y}^{T} = \{\theta_{y1} \quad \theta_{y2} \quad \theta_{y3} \quad \theta_{y4}\}$$

図-2 4節点要素の実座標と正規化座標

(2)式を歪みエネルギー式に代入すると,要素剛性マトリックスが得られる。また,要素剛性マトリックスの積分計算は,選択低減積分法を採用し,次式のように行う。

$$\mathbf{k}^{be} = \int_{-1}^{1} \int_{-1}^{1} \overline{\mathbf{k}}^{be} \left| \mathbf{J} \right| d\xi d\eta = t \sum_{p=1}^{2} \sum_{q=1}^{2} \overline{\mathbf{k}}^{be} \left(\xi_{p}, \eta_{q} \right) \left| \mathbf{J} \right| w_{p} w_{q}$$

$$\mathbf{k}^{se} = t \sum_{p=1}^{1} \sum_{q=1}^{2} \overline{\mathbf{k}}^{sve} \left(\xi_{p}, \eta_{q} \right) \left| \mathbf{J} \right| w_{p} w_{q} + t \sum_{p=1}^{2} \sum_{q=1}^{1} \overline{\mathbf{k}}^{sve} \left(\xi_{p}, \eta_{q} \right) \left| \mathbf{J} \right| w_{p} w_{q}$$
(3)

ただし,ガウス積分点と重みは $\xi_1 = \eta_1 = -0.57735026918963$, $\xi_2 = \eta_2 = 0.57735026918963$, $w_1 = w_2 = 1$ である。また,J は ヤコビアンマトリックスである。

(3)式の要素剛性マトリックスを節点変位の連続性を考慮 して重ね合わせて解くと節点変位が得られ,また,板の曲げ モーメントおよびせん断力が次式によって得られる。

$$\begin{cases}
\begin{pmatrix}
M_{y} \\
M_{x} \\
M_{xy}
\end{pmatrix} = \int_{t/2}^{t/2} z \mathbf{\sigma}^{b} dz = \begin{cases}
D_{11}^{b} \frac{\partial \mathbf{N}}{\partial x} \mathbf{\theta}_{y} - D_{12}^{b} \frac{\partial \mathbf{N}}{\partial y} \mathbf{\theta}_{x} \\
D_{12}^{b} \frac{\partial \mathbf{N}}{\partial x} \mathbf{\theta}_{y} - D_{22}^{b} \frac{\partial \mathbf{N}}{\partial y} \mathbf{\theta}_{x} \\
D_{33}^{b} \left(-\frac{\partial \mathbf{N}}{\partial x} \mathbf{\theta}_{x} + \frac{\partial \mathbf{N}}{\partial y} \mathbf{\theta}_{y}\right)
\end{cases}$$

$$\begin{cases}
Q_{x} \\
Q_{y}
\end{pmatrix} = \kappa \int_{t/2}^{t/2} \mathbf{\sigma}^{s} dz = \begin{cases}
D_{11}^{s} \left(\frac{\partial \mathbf{N}}{\partial y} \mathbf{w} - \mathbf{N} \mathbf{\theta}_{x}\right) \\
D_{22}^{s} \left(\frac{\partial \mathbf{N}}{\partial x} \mathbf{w} + \mathbf{N} \mathbf{\theta}_{y}\right)
\end{cases}$$
(4)

ただし,Dは弾性マトリックスである。 2.2 固有振動解析

固有振動解析に必要となる要素質量マトリックスは,ρ をスラブの単位体積質量とすると次式となる。

$$\mathbf{m}^{e} = \begin{bmatrix} \mathbf{m}^{e}_{w} & \\ & \mathbf{m}^{e}_{\theta_{x}} \\ & & \mathbf{m}^{e}_{\theta_{y}} \end{bmatrix} \qquad \begin{aligned} \mathbf{m}^{e}_{w} &= \rho t \int_{-1}^{t} \int_{-1}^{t} \mathbf{N}^{T} \mathbf{N} |\mathbf{J}| d\xi d\eta \\ & \mathbf{m}^{e}_{\theta_{x}} = \left(\rho t^{3}/12\right) \int_{-1}^{t} \int_{-1}^{t} \mathbf{N}^{T} \mathbf{N} |\mathbf{J}| d\xi d\eta \qquad (5) \\ & \mathbf{m}^{e}_{\theta_{y}} = \left(\rho t^{3}/12\right) \int_{-1}^{t} \int_{-1}^{t} \mathbf{N}^{T} \mathbf{N} |\mathbf{J}| d\xi d\eta \end{aligned}$$

なお,(5)式の積分はガウスの2点積分で行う。(3)式および (5)式を重ね合わせると,次式の固有振動方程式が得られる。 $\left|-\omega^{2}[M]+[K]\right|=0$ (6)

(6)式の固有振動方程式は,ハウスホルダー法によって解く。 2.3 解析モデル

解析モデルは図 - 3 に示す異方性板とする。なお,円形鋼 管は y 軸に平行に入っており,荷重は 1823kgf とする。解析 は,1/4 領域で行い,異方性を等方性に置換したもの(等価 板厚 t = 5.85 cm)と,異方性を考慮したものの2種について 行った。

図-3 解析モデル

2.4 たわみ変位に対する収束性

2.3 節に示した解析モデルに対して,変位の収束性を調査 した。解析は,等方性板と異方性板の両方で行い,境界条件 は単純支持と固定支持,また,要素分割数は4×4,8× 8,・・・,28×28 分割(全体領域)の7種類について行った。 図-4,5 にその結果を示す。図では,解析結果を等分布荷重 が作用する薄板の理論解¹⁾

$$w = 1.26 \frac{PL^4}{10^3 D}$$
 (固定支持), $w = 4.06 \frac{PL^4}{10^3 D}$ (単純支持) (7)

で無次元化している。ただし, $D = Et^3/12(1-v^2)$,Lは板の 長さ,vはポアソン比である。

図より,20×20 分割程度でほぼ収束すること,等方性と異 方性の収束傾向は同様であり,値もほぼ一致すること,理論 値との差が12%程度あることがわかる。

図-4 要素分割に対する中央たわみの収束性(固定支持)

図 - 5 要素分割に対する中央たわみの収束性(単純支持) 2.5 固有振動数に対する収束性

図 - 6,7 は,前節と同様の条件の下で,固有振動数に関す る収束性を調査したものである。ただし,図の値は,等方性 板の固有振動数の理論解¹⁾

$$f = \frac{18}{\pi L^4} \sqrt{\frac{D}{\rho t}} \quad (\text{Bcz5}) \tag{9}$$

で無次元化されている。

図 - 6,7 より, 12×12 分割程度でほぼ収束すること,等 方性と異方性の収束傾向は同様であり,値の差は 3~4%程度 であること,理論値との差が9%程度あることがわかる。

図 - 7 要素分割に対する固有振動数の収束性(単純支持)3. 位相最適化手法

連続体の位相最適化手法では,図-8 に示すように,設計 領域と荷重条件,境界条件を与えることで,剛性を最大化す る位相(形態)を求めることができる。

本研究では,藤井らの開発した位相最適化手法の密度法²⁾ を利用することにより,床補強のための CFRP の最適なレイ アウトを求める。

図 - 8 位相最適化例 4. CFRP テープの最適配置解析法 4.1 8節点アイソパラメトリック要素による定式化

図 - 9 に示す 8 節点 6 面体要素を用いる。ただし,形状関数は,図 - 9 の右に示すような -1 から1 の範囲に正規化された座標 (ξ,η,ζ) で表し,また,要素内の座標 (x,y,z) も同じ形状関数を用いて次式のように表す。ただし,N は形状関数であり, $\mathbf{u}^{\epsilon}, \mathbf{v}^{\epsilon}, \mathbf{w}^{\epsilon}$ は,要素の各節点における変位を成分とするベクトルである。

 $u(x, y, z) = \mathbf{N}(\xi, \eta, \zeta) \mathbf{u}^{e} \qquad x = \mathbf{N}(\xi, \eta, \zeta) \mathbf{x}^{e}$ $v(x, y, z) = \mathbf{N}(\xi, \eta, \zeta) \mathbf{v}^{e} \qquad (10) \qquad y = \mathbf{N}(\xi, \eta, \zeta) \mathbf{y}^{e} \qquad (11)$ $w(x, y, z) = \mathbf{N}(\xi, \eta, \zeta) \mathbf{w}^{e} \qquad z = \mathbf{N}(\xi, \eta, \zeta) \mathbf{z}^{e}$

なお,節点の順番は図-9に示されるものとする。

図-9 8節点6面体要素

ひずみ - 変位関係式は

$$\mathbf{\epsilon} = \mathbf{B}\mathbf{d}^e$$

ここに,

$$\boldsymbol{\varepsilon} = \begin{cases} \boldsymbol{\varepsilon}_{x} \\ \boldsymbol{\varepsilon}_{y} \\ \boldsymbol{\varepsilon}_{z} \\ \boldsymbol{\gamma}_{xy} \\ \boldsymbol{\gamma}_{yz} \\ \boldsymbol{\gamma}_{yz} \\ \boldsymbol{\gamma}_{zx} \end{cases}, \quad \mathbf{B} = \begin{bmatrix} \frac{\partial \mathbf{N}}{\partial x} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \frac{\partial \mathbf{N}}{\partial y} & \mathbf{0} \\ \mathbf{0} & \frac{\partial \mathbf{N}}{\partial z} & \mathbf{0} \\ \frac{\partial \mathbf{N}}{\partial y} & \frac{\partial \mathbf{N}}{\partial z} & \mathbf{0} \\ \frac{\partial \mathbf{N}}{\partial z} & \frac{\partial \mathbf{N}}{\partial z} \\ \frac{\partial \mathbf{N}}{\partial z} & \mathbf{0} & \frac{\partial \mathbf{N}}{\partial z} \end{bmatrix}$$
(13)

4.2 応力仮定法要素による定式化

応力仮定法による定式化では,変位を(10)式のように仮定 するだけでなく,要素内の応力を次式で仮定する。

$$\boldsymbol{\sigma} = \begin{cases} \boldsymbol{\sigma}_{x} \\ \boldsymbol{\sigma}_{y} \\ \boldsymbol{\sigma}_{z} \\ \boldsymbol{\tau}_{xy} \\ \boldsymbol{\tau}_{yz} \\ \boldsymbol{\tau}_{zx} \end{cases} = \begin{cases} c_{11} + c_{12}y + c_{13}z + c_{14}yz \\ c_{21} + c_{22}z + c_{23}x + c_{24}zx \\ c_{31} + c_{32}x + c_{33}y + c_{34}xy \\ c_{41} + c_{42}z \\ c_{51} + c_{52}x \\ c_{61} + c_{62}y \end{cases} = \mathbf{N}_{s} \mathbf{c}$$
(14)

(14)式を,応力-ひずみ関係式に代入すると,

$$\boldsymbol{\varepsilon} = \mathbf{D}^{-1}\boldsymbol{\sigma} = \mathbf{D}^{-1}\mathbf{N}_{S}\boldsymbol{c} \tag{15}$$

ただし, \mathbf{D}^{-1} は弾性マトリックス \mathbf{D} の逆マトリックスである。

一方,(10)式の変位の仮定から導かれるひずみは(12)式と なる。(12)式のひずみと(15)式のひずみは一致する必要があ るが,ここでは,次式のようなエネルギー的な一致条件を課 す。

$$\iiint_{\Omega^e} \delta \mathbf{\sigma}^T \Big[\mathbf{D}^{-1} \mathbf{N}_s \mathbf{c} - \mathbf{B} \mathbf{d}^e \Big] d\Omega = 0$$
(16)

(16)式に, (14)式を代入すると,

$$\delta \mathbf{c}^{T} \iiint_{\Omega^{e}} \mathbf{N}_{S}^{T} \left[\mathbf{D}^{-1} \mathbf{N}_{S} \mathbf{c} - \mathbf{B} \mathbf{d}^{e} \right] d\Omega = \delta \mathbf{c}^{T} \left[\mathbf{M}_{S} \mathbf{c} - \mathbf{M}_{B} \mathbf{d}^{e} \right] = 0$$
(20)

要素剛性マトリックスは,次のようになる。

$$\mathbf{k}^{e} = \iiint_{\Omega^{e}} \overline{\mathbf{B}}^{T} \mathbf{D} \overline{\mathbf{B}} d\Omega = \mathbf{M}_{B}^{T} \mathbf{M}_{S}^{-1} \mathbf{M}_{B}$$
(21)

ただし,

(12)

$$\mathbf{M}_{s} = \iiint_{\Omega^{e}} \mathbf{N}_{s}^{T} \mathbf{D}^{-1} \mathbf{N}_{s} d\Omega$$
⁽²²⁾

$$\mathbf{M}_{B} = \iiint_{\Omega^{e}} \mathbf{N}_{S}^{T} \mathbf{B} \, d\Omega \tag{23}$$

なお,(22),(23)式で定義される 4.3 解析モデル

解析モデルは以下の4つとする。図-10のCase.1~Case.3 は,施工性を考慮した単純なモデルであり,Case.4 が最適化 手法を用いて求められたものをCFRPの幅を考慮して近似し たモデルである。CFRPの面積はCase.4 と比較して,Case.1 は約11%,Case.2 は約22%,Case.3 は約4%多くなっている。 なお,等方性を考慮してCase.4 のCFRP はレイアウトして ある。

4.4 各 CFRP 板補強モデルの解析比較

各モデルに関して,最大たわみと最大応力の比較を行った。

解析モデルは、2.3 節と同じモデルであり、材料定数が、ヤング係数 $E_x=1.9E+5, E_y=1.95E+5, E_z=8.36E+4kgf/cm^2$ 、ポアソン 比xy=0.17、xz=0.17, yz=0.17, せん断弾性係数 $G_{xy}=4.33E+4$, $G_{xz}=2.98E+4, G_{yz}=4.27E+4kgf/cm^2$ となる。また、各モデルの CFRP のレイアウトは 2.3 節に対応している。なお、CFRP 板の材料定数は、ヤング係数 E=1.49E+6 kgf/cm²、ポアソン 比=0.3の等方性板とする。CFRP 板のサイズは幅 5cm、板 厚 0.1cm である。表 - 1 より最大たわみは Case.4 が他に比べ 小さくなっていることがわかる。また、表 - 2 より最大応力 も Case.4 が他に比べ小さくなっていることがわかる。

表 - 1 甲央な	こわみの比較	Z
-----------	--------	---

	Case.1	Case.2	Case.3	Case.4
中央たわみ	7.525E-03 cm	7.433E-03 cm	7.175E-03 cm	6.716E-03 <i>cm</i>

表 - 2 最大応力の比較

	Case.1	Case.2	Case.3	Case.4
最大♂×	1.452E+01kgf / cm ²	1.426E+01kgf / cm ²	1.402E+01kgf / cm ²	8.530E+00kgf / cm ²
最大♂y	1.453E+01 kgf / cm	1.414E+01kgf / cm ²	1.384E+01kgf / cm²	8.342E+00kgf / cm

5. 実験との比較

5.1 初期剛性の比較

図 - 11,12 より,応力仮定法を組み込んでない場合と組み 込んだ場合のどちらも初期剛性は,境界を単純支持とした解 析値の方が実験値に近いことがわかる。

図 - 12 初期剛性の比較(応力仮定法有)

5.2 応力の比較

表 - 3,4 より, M_x , x, yは,実験値が単純支持と固定 支持の解析値のほぼ中間となり, M_y は, M_x に対する比が解 析値の方が大きくなっていることがわかる。

表-3 曲げモーメントの比較(応力仮定法無)

	単純支持	固定支持	実験値
Иx	69.8 kgf · cm	32.3 kgf · cm	49.6 <i>kgf ∙ cm</i>
Му	63.4 kgf · cm	28.5 kgf · cm	30.9 kgf · cm

表-4 曲げ応力の比較(応力仮定法有)

	単	〔純支持		固定支持	3	実験値
σx	20.66	kgf / cm ²	8.67	kgf / cm²	14.07	kgf/cm^2
σv	22.12	kgf / cm^2	9.1	kgf/cm^2	16.17	kgf/cm^2

5.3 固有振動数の比較

表 - 5 は,固有振動数に関して,実験で得られた値と解析 で得られた値を比較したものである。表より,固有振動数も, 固定支持よりも単純支持の方に近い値となることがわかる。

衣‐) 回行派勤奴の比戦	表 - 5	固有振動数の比較
--------------	-------	----------

	単純支持	固定支持	実験
固有振動数(Hz)	197.8 <i>Hz</i>	361.3 <i>Hz</i>	200.2 Hz

5.4 CFRP 貼り付けの剛性比較

4.3 節の各モデルの実験で得た荷重-たわみ曲線から,弾性 剛性を比較したものが図 - 13 である。図より荷重が 2000kgf のときでも,たわみの開きが 0.07cm とごくわずかであり, それほどどのモデルも剛性に差はないものの,若干 Case.2 と Case.4 が他に比べ剛性が高くなっていることがわかる。

6. 結論

中空スラブの解析を行うために,ミンドリン理論に基づく 板曲げ応力解析と固有振動解析プログラムを開発した。要素 分割に対する収束性を調査した結果,20×20分割程度で中 央たわみがほぼ収束することがわかった。また,固有振動数 に関しては,12×12 分割でほぼ収束することがわかった。 また, CFRP 補強を行った中空スラブの解析を行うため,応 力仮定法を用いた3次元要素の積層板解析プログラムを開発 した。解析値と理論値との比較を行った結果,20×20分割程 度で中央たわみがほぼ収束することがわかった。また, CFRP の最適なレイアウトを求めるために,位相最適化手法 を組み込んだ3次元要素の積層板解析プログラムを開発した。 本プログラムで得られたの検証について,最適位相で CFRP 補強を施したモデルと他の基本モデルを比較した結果,たわ み,応力とも値が小さくなった。以上により本論文で提案し た手法は CFRP の最適レイアウトを決める上で有効であるこ とが確かめられた。ただし,実験データを考察すると,剛性 の差がそのまま強度に反映されるとは限らないことがわかっ たため,今後の改善として,プログラムを塑性領域まで拡張 することが必要と考えられる。

7. 謝辞

本論文を完成させるにあたり,近畿大学工学部建築学科の 在永末徳教授,森村毅教授,及び藤井大地助教授には助言, 指導を賜りました。ここに感謝の意を表します。

8. 参考文献

[1] ティモシェンコ, ヴォアノフスキークーリーガー共著「板とシェルの理論 上 」プレイン図書出版株式会社

[2] 藤井大地著「パソコンで解く構造デザイン」丸善株式会社