近畿大学工業技術研究科建築学専攻修士論文概要

	平成 16 年度	番号	03309208
指導教官	森村 毅 教授	氏名	榛葉 亮
題名	廃タイヤを利用した	戸建住宅	の免震基礎に関する研究

1. はじめに

近年,環境問題に非常に関心が高まる中,廃棄物の建築材 料への利用が様々試みられている。エコセメントや再生コン クリートはその代表的な例である。本研究では,このような 廃棄物の内,廃タイヤに注目し,これを建築材料として利用 できないかを検討した。

廃タイヤは、2002年のデータ¹⁾では、約80%が自動車のタ イヤ交換時に発生し、本数で年間約1億600万本、重量で 104万トンと、莫大な量となっている。この内、88.5%がリサ イクルされているが、タイヤを燃やして熱エネルギーとして 利用するサーマルリサイクルの比率が56%と高く、ダイオキ シンの発生や焼却後の廃棄物処理の問題などが指摘されてい る。したがって、サーマルリサイクル以外の利用法が模索さ れているのが現状である。

廃タイヤの建材としての利用に関する研究は,熊谷らの研 究や湯浅ら²⁾の研究が挙げられるが,非常に少ない。そこで, 本研究では,当初,住宅免震用の積層ゴムとしての利用を検 討したが、タイヤには、スチール等のゴム以外の材料が含ま れており,積層ゴムとしての再利用は適当でないことがわか った。そこで,次に,大地震の際に,住宅全体を滑らせ,滑 る範囲を制御するためのバネとして廃タイヤを利用すること を考えた。

そこで,昔の住宅は,柱が玉石に置かれるだけの構造に注 目した(図-1参照)。建物は、中地震程度では摩擦によって 動かず、大規模な地震時のみ滑動し、地震力を低減する。

図-1 昔の木造住宅の基礎³⁾

しかしながら、市街地の住宅において、大地震時に滑る構 造を採用すると、隣接建物と接触したり、あるいは衝突する 危険性がある。したがって、建物の滑る範囲は、ある程度制 御する必要がある。そこで、本研究では、廃タイヤを建物の 基礎内部に配置し、滑る範囲を制御するためのバネとして利 用することを考えた。 このような基礎の滑り摩擦を利用する原始的な免震基礎で は、最近開発されている免震基礎のような大きな長周期化は 期待できないが、最近の研究で、建物の大きな長周期化が必 ずしも安全とは限らないことが指摘されはじめた。例えば、 2003 年北海道十勝沖地震では、非常に長周期の振動により、 重油タンクが被害を受けた。このような長周期振動は、都市 部の地下構造が大域的にすり鉢状になっているためと考えら れている。したがって、免震住宅が必ずしも大地震において 効果的であるとは限らない。

以上のこのようなことを考慮すると、基礎を切断する原始 的工法は、施工が容易で、既存建物にも適用できるという利 点がある。また、滑り変位を制御するバネとして廃タイヤが 利用できれば、環境問題への貢献も大きいものと考えられる。 そこで、本研究では、図-2 に示すように基礎の犬走り下部 を切断し、廃タイヤを建物の基礎内部に配置して滑る範囲を 制御するバネとして利用する戸建住宅の基礎モデルを提案す る。そして、模型実験と解析により、このような戸建免震基 礎の有効性について検討を行う。

図-2 基礎の切断位置

2. 免震建物の地震応答解析

本論文では、まず、免震建物の設計に利用することを目的 として, Excel VBA を利用した振動解析ソフトを作成した⁴⁾。 図-3 は,振動解析モデルを示している。このモデルにお ける運動方程式は次式のように書ける。

$$\begin{split} & {\bf \underline{k}} \vec{w} \quad c_1 \dot{x}_1 - c_2 (\dot{x}_2 - \dot{x}_1) + k_1 x_1 - k_2 (x_2 - x_1) = 0 \quad (1) \\ & {\bf \underline{k}} \dot{m} \quad m \ddot{x}_2 + c_2 (\dot{x}_2 - \dot{x}_1) + k_2 (x_2 - x_1) = -m \ddot{x}_0 \quad (2) \end{split}$$

ここに、mは建物の質量、 $k_1 \ge c_1$ は免震基礎の剛性と減 衰、 $k_2 \ge c_2$ は建物の剛性と減衰、x ODDは地動速度である。 基礎の剛性 k_1 は、クーロン摩擦を仮定し、静止摩擦力以下 では、大きな剛性を与え、それを超えると廃タイヤのバネ剛 性に変化させる (Bi-Linear 特性)。また、(1)、(2)式の運動方 程式は平均加速度法によって数値積分を行う。

3 戸建免震基礎模型による実験

本研究で提案する免震基礎の有効性を確かめるため、一般 的な住宅の基礎伏図を用い、図-4 に示すような模型を作成 した。図に示す、犬走り部分は、基礎板には固定せず、基礎 内部のタイヤ止め矩形ブロックは基礎板に固定している。タ イヤには、ラジコンの模型タイヤを用いている。

まず、模型タイヤの特性を調査するために、図-5 に示す ような、実験装置を作成した。図-5(左)1 つのタイヤの剛性 を計測するための装置で、図-5(右)タイヤ同士の相互干渉を 考慮して、側面を拘束した場合の剛性を計測するための装置 である。

図-6 は、図-5 の装置を用いて、計測した荷重変位関係 を示している。最小二乗近似により、線形剛性を求めると、 拘束なしの場合が、0.5093 (kgf/cm)になり、拘束ありの場合 は、2.2130 (kgf/cm)になった。

図-7 は、火災時を考慮して、タイヤ部分を土に埋めたこ とを想定したモデルを示している。図-8 は、この場合のタ イヤの剛性を、計測するための実験の様子を示している。図 -8 は、この場合の実験結果(荷重変位図)を示している。図 -7 と同様に、タイヤの線形剛性は、拘束なしの場合は 0.828 (kgf/cm)になり、拘束ありの場合は7.097 (kgf/cm)に なった。

次に、図-4 の模型に対して、犬走りの部分に荷重を加え たときの荷重と変位の関係を計測し線形剛性を求めた結果、 26.3 (kgf/cm) になった。同様に、図-7 のモデルに対しても、 同様な実験を行い、線形剛性を求めた結果、134.4 (kgf/cm) である。

図-4 模型タイヤを使用した基礎伏 1/10 模型

_(kgf) 図-5 模型タイヤの実験

図-7 模型タイヤを砂で埋めた場合の基礎伏 1/10 模型

図-8 模型タイヤ砂入りの実験

4 実物廃タイヤの剛性を求める実験

次に、第3章の模型と実際の建物との整合性をとるために、 実物廃タイヤのバネ剛性を計測する実験を行った。実験は、 図-10に示すように、圧縮試験機を用いて行った。図-11 は、このときの実験結果(荷重変位関係)を示している。また、 この場合の線形剛性を求めた結果、9.4 (kgf/cm)となった。

5 免震基礎の廃タイヤ剛性を求めるための解析

第3章の模型実験の結果から、実際の建物の免震基礎の廃 タイヤ剛性を予測するためには、模型実験を解析によってシ ュミレートし、第4章の実際の廃タイヤの剛性と整合するよ うに、現実の建物をモデル化すれば良い。本研究では、モデ ル化は容易な骨組解析法を用いる。

まず、1 個のタイヤは、図-12 に示すようなトラスモデル で近似する。図-12 のモデルでは、側面拘束の無いタイヤの 剛性を、⑤部材の軸方向剛性で近似する。また、側面拘束が ある場合の付加剛性を①②③④部材の地軸方向剛性で近似す る。図-5、図-8 の結果と整合するように、材料定数を決定 すると、図-13 に示す値となる。

次に図-14 に示すような解析モデルを作成し、図-4、図-7 の廃タイヤ剛性をシュミレートした。なお、図-14 のモ デルでは、荷重に抵抗しないと思われるタイヤは省略してい る。解析の結果、砂なしの剛性は31.3 (kgf/cm)、砂ありの剛 性は175.6 (kgf/cm)となった。模型実験の結果では、前者が 26.3 (kgf/cm)になり、後者が 134.4 (kgf/cm)になった。解析 の方が若干高剛性となるが、ほぼ実験をシュミレートできて いると思われる。

次に、実物大の免震基礎の廃タイヤ剛性を求めるためには、 図-12 のタイヤモデルの材料定数を設定する必要がある。ま ず、実物タイヤの剛性は第 4 章の結果より 9.4 (kgf/cm) であ る。次に図-5 の実験結果を参考に、4 倍の 37.6 (kgf/cm) と する。また、砂入りの場合は、模型実験と同様な比率で剛性 が上がるものと仮定し、それぞれの材料定数を図-15 のよう に決定した。また、図-14 のモデルを、実物大のスケールに 拡大し、解析を行なった結果、免震基礎の廃タイヤ剛性は、 砂無しの場合が 536 (kgf/cm) 砂ありの場合が 1611 (kgf/cm) と なった。

実物タイヤの材料定数
$E = 10(kgf/cm^2), A_1 = 223.5(cm^2), A_2 = 52.65(cm^2),$
砂入りの場合の材料定数
$E = 10(kgf/cm^2), A_1 = 820.245(cm^2), A_2 = 85.8195(cm^2),$

6 免震戸建住宅の地震応答解析

第5章で求めた廃タイヤ剛性を用いて、図-3の解析モデルにより、免震基礎を有する戸建住宅の解析を行った。解析 に必要な解析においた設定したデータ表-1に示す。

地震波のデータとしては、近年起こった 4 種の地震を選択 した。表-2 は解析結果を示している。なお、摩擦係数∞は、 基礎と地盤が緊結された場合を想定している。

表-2 より、芸予地震、宮城県沖地震、十勝沖地震に関し ては、タイヤなしに比較してタイヤありの最大変位が小さく なっている。特に、十勝沖地震ではその傾向が顕著である。 しかし、新潟県中越地震では、タイヤなしに比較して、タイ やありの最大変位が大きくなる場合がある。これは、滑動後 の免震建物の固有周期が、新潟県中越地震の波動と共振した ためであると考えられる。

図-15~図-17 は、宮城県沖地震の E-W 波の変位応答履 歴を示したものである。図に示すように、タイヤありの変位 応答が小さくなっていることがわかる。

建物データ	固有周期	0.2(<i>s</i>)
	減衰定数	0.05
	建物質量	$40000(kgf)/980(cm/s^2)$
	建物剛性	39478417.61(kgf/cm)
基礎データ	初期	$10^{9}(kg/cm)$
	减衰定数	0.01
	降伏せん断力	[建物質量×980×摩擦系数(kgf)
	降代網性	536(kg/cm), 1611(kg/cm)
	繼那期	$100(s) \sim 120(s)$
地震加速度データ	地震波	・芸術震
		・宮城県沖地震
		・十勝中地震
		・新潟県中越北震
	時間隔	0.01(s), 0.02(s)

表-1 解析データ

± 0	あみもじ シナ・田
衣一乙	西半打 結 禾

	卡位	麻坡	タイヤ	7なし	タイト	Pあり	タイヤあ	り砂入り
地震名	一位在一位	承 「「「「「」」 「「」」	建物	基礎	建物	基礎	建物	基礎
	ШŦ	11.34	最大加速度	最大変位	最大加速度	最大変位	最大加速度	最大変位
王 王 子 地震		0.3	321.30(gal)	1.9(cm)	317.12(gal)	1.4(cm)	322.54(gal)	1.1(cm)
	NS#	0.4	419.30(gal)	1.1(cm)	418.63(gal)	1.0(cm)	421.40(gal)	0.9(cm)
	14-54X	0.5	518.46(gal)	0.4(cm)	517.87(gal)	0.4(cm)	522.63(gal)	0.4(cm)
		8	803.95(gal)	0(cm)	803.95(gal)	0(cm)	803.95(gal)	0(cm)
		0.3	310.52(gal)	0.9(cm)	312.50(gal)	0.9(cm)	334.95(gal)	0.8(cm)
	F W述	0.4	407.04(gal)	0.9(cm)	407.54(gal)	0.8(cm)	419.18(gal)	0.6(cm)
	L- W 1/X	0.5	503.21(gal)	0.7(cm)	500.51(gal)	0.5(cm)	509.29(gal)	0.4(cm)
		8	1060.13(gal)	0(cm)	1060.13(gal)	0(cm)	1060.13(gal)	0(cm)
		0.3	337.13(gal)	3.7(cm)	372.09(gal)	3.8(cm)	454.96(gal)	3.6(cm)
宮	NSH	0.4	433.87(gal)	4.1(cm)	468.83(gal)	3.7(cm)	538.89(gal)	3.2(cm)
城	IN-5#X	0.5	532.30(gal)	6.0(cm)	551.19(gal)	3.9(cm)	616.21(gal)	2.9(cm)
県		8	4716.64(gal)	0(cm)	4716.64(gal)	0(cm)	4716.64(gal)	0(cm)
沖		0.3	322.78(gal)	5.5(cm)	326.88(gal)	2.7(cm)	364.27(gal)	1.9(cm)
地	E Witt	0.4	427.16(gal)	4.6(cm)	421.55(gal)	2.4(cm)	458.68(gal)	1.8(cm)
震	E-W (X	0.5	528.07(gal)	3.6(cm)	521.01(gal)	2.0(cm)	557.41(gal)	1.8(cm)
		8	3703.18(gal)	0(cm)	3703.18(gal)	0(cm)	3703.18(gal)	0(cm)
		0.3	352.56(gal)	19.1(cm)	359.84(gal)	3.9(cm)	423.95(gal)	3.3(cm)
	NSt	0.4	451.26(gal)	15.6(cm)	443.53(gal)	4.0(cm)	488.06(gal)	3.1(cm)
+- R#4	IN-5⊕X	0.5	550.37(gal)	11.3(cm)	541.76(gal)	4.2(cm)	585.12(gal)	3.2(cm)
防油		8	2076.37(gal)	0(cm)	2076.37(gal)	0(cm)	2076.37(gal)	0(cm)
州		0.3	348.36(gal)	22.1(cm)	365.77(gal)	4.4(cm)	445.78(gal)	3.4(cm)
震	F W述	0.4	450.76(gal)	18.8(cm)	453.51(gal)	3.9(cm)	519.23(gal)	3.1(cm)
Лх	E- <i>W (</i>)X	0.5	550.93(gal)	12.3(cm)	541.49(gal)	3.5(cm)	590.46(gal)	2.8(cm)
		8	2183.53(gal)	0(cm)	2183.53(gal)	0(cm)	2183.53(gal)	0(cm)
-	N-S波	0.3	354.18(gal)	13.8(cm)	518.24(gal)	15.3(cm)	1041.90(gal)	19.0(cm)
新潟県中越地震		0.4	438.92(gal)	12.7(cm)	536.27(gal)	10.2(cm)	922.65(gal)	13.5(cm)
		0.5	522.99(gal)	9.0(cm)	606.69(gal)	8.8(cm)	788.43(gal)	7.6(cm)
		8	1511.52(gal)	0(cm)	1511.52(gal)	0(cm)	1511.52(gal)	0(cm)
	E-W波	0.3	360.25(gal)	17.9(cm)	586.74(gal)	20.9(cm)	1211.59(gal)	23.1(cm)
		0.4	451.98(gal)	15.4(cm)	635.78(gal)	17.3(cm)	1061.70(gal)	16.8(cm)
		0.5	538.88(gal)	12.3(cm)	673.54(gal)	12.9(cm)	951.51(gal)	11.5(cm)
		8	2056.74(gal)	0(cm)	2056.74(gal)	0(cm)	2056.74(gal)	0(cm)

図-15 宮城県沖地震 EW 波・摩擦 0.4・タイヤなし

図-17 宮城県沖地震 EW 波摩擦 0.4・タイヤあり砂入り

7 結論

本論文では、昔の住宅を参考に、基礎を緊結せずに、地震 時に建物を滑らせ建物に伝わる地震のエネルギーを低減する 工法を提案し、また、その滑る範囲を制御するため、基礎内 部に廃タイヤを配置し、干渉バネと利用する新たな免震基礎 工法を提案した。そして、免震基礎の有効性を検討するため 模型を制作し、免震基礎に配置したタイヤの剛性を調べる実 験を行った。次に、実際の建物に設置した免震基礎のタイヤ の剛性を特定するために、骨組解析により、模型実験をシュ ミレートし、解析によって実際の建物のタイヤ剛性を求めた。 以上によって求めたタイヤ剛性を用いて、数種の地震波に対 する、免震住宅モデルの地震応答解析を行った結果、ほとん どの地震波に対しては、廃タイヤによる、変位制御が有効で あることが確かめられた。しかし、新潟県中越地震に対して は、タイヤの変位制御効果は見られなかった。

本研究では、廃タイヤの剛性のみを考慮し、基礎切断面の 摩擦による減衰および、タイヤの変形による減衰は考慮しな った。特に土に埋めたタイヤに関してはかなりの減衰効果が あるものと考えられる。このような減衰効果を考慮すれば、 タイヤの変位制御効果は、もっと大きくなるものだと考えら れる。この点については、今後の研究課題である。

参考文献

- 1) JCA 株式会社ジェイシィエー http://www.tire-recycle.jp/
- 2) 湯浅昇,笠井芳夫,松井勇,西谷伸介:廃タイヤのコンクリートへの有効利用に関する研究-その1 廃タイヤの骨材代替率と強度、変形性状の関係-,日本建築学会大会学術講演梗概集(北陸), pp.943-944, 2002.8
- 3) 重要文化財 山本家住宅修理工事報告書